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Ab initio calculations on the linear lithium chain, the linear lithium hydride 
chain and a beryllium hydride polymer have been performed using the crystal 
orbital method. The influence of an increase of the basis set, an increase in the 
number of neighbors and an increase of the density of k-points in the Brillouin 
zone on the calculated equilibrium geometries and band structures has been 
studied systematically. A proper description of the unit cell and the interaction 
between neighboring cells turned out to be most important. Energy bands 
were found to be extremely sensitive to any variation in the basis set applied. 
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1. Introduction 

Nowadays, ab initio calculations on small and medium-size molecules at the 
Hartree-Fock level have almost become a matter of routine. On the other hand, for 
extended systems, like polymers, layers, and crystals, nonempirical calculations of 
near Hartree-Fock quality have not yet been performed. Although several methods 
have been developed to handle properly the problem of translational symmet12r 
within the framework of the Hartree Fock approximation [1-6], the accuracy 
of the Hartree-Fock method in extended systems has not yet been assessed 
quantitatively. Most actual applications have either been performed with rather 
limited basis sets or used rather drastic approximations with respect to the treat- 
ment of lattice sums. The crucial importance of the use of extended basis sets in the 
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quantum mechanical treatment of molecules has generally been accepted [7, 8]. 
Polymers or crystals can be viewed as "large" molecules, hence it is only to be 
expected that for a correct description of these systems the basis set problem plays a 
central role. 

The aim of this work is to present extensive numerical investigations on the 
various convergence problems, which arise in a theoretical treatment of extended 
systems. Since ab initio studies on these systems are rather time-consuming, we 
restricted ourselves to one-dimensional model systems. To be able to discuss also 
physically different situations, we chose as representative examples the linear, 
metallic lithium chain, the ionic lithium hydride chain and a beryllium hydride 
polymer. The latter is largely covalent, but still has some ionic character. The case 
of a hydrogen-bonded chain has already been treated previously by us [9]. 

The criteria for choosing these model systems were, apart from the chemical point 
of view, mainly determined by economical reasons. Only systems with light atoms 
and small unit cells allow a systematic investigation of the influence of basis set, 
number of neighbors, and number of k-points on the computed ground state 
properties, as for example equilibrium geometries, force constants, stabilization 
energies per unit cell and the band structure of occupied bands. A concomitant 
drawback is therefore that the numerical results obtained in the present investiga- 
tion can hardly be compared with experiment directly. They should rather be 
understood as a further step on the way to obtain a more accurate description of 
extended systems. Additionally they could possibly serve to get a better under- 
standing of the technical problems which are involved in a Hartree-Fock treat- 
ment of periodic systems and give some useful hints for further applications. 

2. Method of Calculation 

Throughout this work the Crystal-Orbital (CO) formalism was used which has 
been developed simultaneously and independently by two different groups [1, 2]. 
The advantage of this approach lies in the fact that it is a straightforward extension 
of the usual Hartree-Fock procedure to periodic systems and hence monomers, 
dimers, small clusters and extended systems can be studied conveniently at the 
same level of approximation. Although a large number of ab initio calculations 
using the CO method has recently been published [10-15], only certain aspects of 
the various convergence problems connected with this technique have been treated. 
The influence of the number of neighbors taken into account has been studied 
for the case of a linear hydrogen chain in one particular geometrical arrangement, 
using a fixed (STO-4G) basis set [43]. The influence of an improvement in the 
basis set applied has been investigated for a bent hydrogen fluoride chain, again at a 
fixed geometry [441. A systematic study of these methodical aspects including 
geometry optimization as well is still missing. 

To facilitate a discussion of the methodical problems connected with CO cal- 
culations, we shortly recall the necessary equations (see Refs. [1] and [16]). The 
complex pseudoeigenvalue problem which has to be solved point by point in 
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k-space can be written as 

F'(k) d(k)= e(k)S'(k) d(k) 

where 

F'(k) = 

and 

S'(k) = 

(1) 

+ 0 o  

dkR~F(q) (2) 
q m  --cO 

+ o 0  

e ikRq S(q). (3) 
q =  --CO 

The elements of the matrices F(q) and S(q), respectively, are defined as 

[F(q)],.s=(Zo[_�89 ~co ~ Z~ 

+ c o  + c o  

0 q q t  + Z E EP(qa-q2)u,,~( Z,.L~lZu Z~2>-exch) (4) 
q I ~ - - C O  q 2 = - - C O  U,V 

o q [S(qL,~= (z, G) .  (5) 

The density matrices occurring in Eq. (4) are determined by a numerical integration 
over the first Brillouin zone" 

+ x /a  o r  

P(ql--q2),,,~ = 2~ 2 d(k)*,, d(k)h,v e ~k~(q~-q~) dk (6) 
h = l  

- ~ z / a  

where a is the length of the unit cell. The total energy per unit cell is hence defined as 

+ n / a  occ  6~ 

E/cell= 2nn f h~_l__ [I(k)h'h + e(k)h] dk + nuclear repulsion (7) 

where 

I(k)h,h = d(k)*I(k) d(k)h (8) 

and 
+ c o  

I (k)= ~ e'knqI(q) (9) 
q =  --cO 

where the I(q)'s are the one-electron parts of the Fock matrices F(q). 

Besides the usual convergence problems, which are known from the standard 
Hartree-Fock procedure for molecules, namely convergence with respect to the 
basis set used, and convergence within the SCF cycle, one has additionally to deal 
with the summations in Eqs. (2) and (3), which correspond to lattice sums. Finally 
convergence with respect to the number of k-points in the Brillouin zone which is 
used for the integrations in Eqs. (6) and (7) has to be achieved. 
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For all calculations presented in this work a SCF convergence criterion of 1.0.10- 6 
for the density matrices was applied. Basis sets were taken from Refs. [17] and 
[-18], and additional polarization functions have been optimized with respect to the 
total energy, to obtain more flexibility in the valence region. For two reasons this 
optimization was performed for the isolated molecules only. Firstly, a comparison 
between total energies of the monomers and total energies per unit cell for the 
infinite systems is easier if the same basis sets are used. This is quite justified if the 
basis set used has enough flexibility to describe properly both cases. Secondly, 
optimization in the periodic systems is somewhat problematic because of near- 
linear-dependence problems. Due to truncations of the lattice sums in Eqs. (2) and 
(3) the matrices S(k) may either be non-positive definite or may have very small 
eigenvalues. The same difficulties are encountered if basis functions with too small 
exponents are used. The overlap matrices may also have already converged, but 
the resulting small eigenvalues cause numerical problems. Therefore, in the 
process of optimizing additional functions one often cannot find an energy mini- 
mum, but directly enters a region where unreasonable results are obtained. This 
problem has been recognized a long time ago [19], but has to be kept in mind for 
actual calculations. The numerical integrations in Eqs. (6) and (7) have been 
performed according to Sirnpson's rule. 

For the case of the lithium chain and the lithium hydride chain seven points have 
been computed around the equilibrium geometry to determine the force constants. 
The equilibrium geometries of the beryllium hydride dimer, trimer and polymer 
have been determined by computing five points along each coordinate plus several 
coupling points. The resulting hypersurface was fitted by two- and three- 
dimensional polynomials of third degree. 

3. The Linear, Metallic Lithium Chain 

As a simple model for a metallic system a hypothetical, linear lithium crystal was 
selected. The metallic lithium crystal has been treated several times by ab initio 
techniques. The GI method has been applied by O'Keefe and Goddard [20, 21]. 
Calais and Sperber [22] used the AMO method, whereas Kumar, Monkhorst and 
Harris [23, 24] used a fourier transform technique. Stoll and PreuB described an 
approach which takes advantage of the different convergence behavior of the 
lattice sums in direct and reciprocal space [-5]. The only ab initio calculation on a 
linear lithium chain performed so far used an STO 3G basis set [25]. 

Due to the smallness of the unit cell, which contains only one lithium atom, 
extensive investigations of the influence of basis set, number of neighbors and 
number of k-points could be performed. In addition to calculations on the metallic 
lithium chain, the case of a molecular chain built up from Li2 molecules was 
considered as well. Both the intermolecular and the intramolecular distances were 
varied independently. Whereas pure s basis sets still give a minimum at an inter- 
molecular distance of about 7.0 a.u., while the intramolecular distance is practi- 
cally unchanged, this artifact, which can be traced back to the well known super- 
position error, vanishes, if polarization functions are added. Thus the lithium 
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Table 1. Total energy per unit celt and band structure of  the infinite, metallic lithium chain at 
rLi Li = 5.9 a.u., with different number of neighbors and different k-points using a 6s-basis a. All values 
are given in a.u. 

Total 
Number Number  energy 
of of per unit 
neighbours k-points cell /;ls(0) ElS(7~ ) Albs E:2s(0 ) I;Ferrni A2 c 

1 21 -7.426584 
2 21 -7.425010 
3 21 -7.424656 
4 21 -7.424660 
6 21 -7.424715 
8 21 -7.424747 

10 21 -7.424766 
6 13 -7.424736 
6 17 -7.424719 
6 25 - 7.424714 
6 33 - 7.424713 

-2.52676 -2.52700 0.00024 -0.23791 -0.20832 0.02959 
-2.50750 -2.50722 0.00028 -0.26033 -0.11555 0.14478 
-2.50051 -2.50035 0.00016 -0.23865 -0.12371 0.11494 
-2.49679 -2.49672 0.00007 -0.22892 -0.11189 0.11703 
-2.49292 -2.49281 0.00011 -0.23165 -0.10954 0.12211 
-2.49089 -2.49080 0.00009 -0.22576 -0.10809 0.11767 
-2.48966 -2.48955 0.00011 -0.22676 -0.10712 0.11964 
-2.49292 -2.49281 0.00011 -0.23178 -0.10946 0.12232 
-2.49292 -2.49281 0.00011 -0.23168 0,10952 0.12216 

2.49292 -2.49281 0.00011 -0.23165 -0.10954 0.12211 
-2.49292 -2.49281 0.00011 -0.23164 -0.10955 0.12209 

aSee Ref. [17]. 
bBandwidth of the core band. 
c Width of the occupied part of the valence band. 

chain is unbound with respect to isolated Li2 molecules at all distances in the 
Hartree Fock approximation. This result could be expected for electrostatic 
reasons, since the quadrupole-quadrupole interaction is repulsive in the linear 
arrangement. Nevertheless for the case of an equidistant chain a local minimum 
exists, which means that the lithium chain is stable with respect to isolated lithium 
atoms. 

For pilot calculations we used the 6s basis contracted to four groups. Table 1 
shows the total energy per unit cell and the relevant data for the band structure of  
the infinite lithium chain at a fixed distance of  5.9 a.u., which is close to the 
equilibrium distance, as a function of  the number of neighbors taken into account 
and the number of  k-points used. In Table 2 the variation of  the equilibrium 

Table 2. Total energy per unit cell, equilibrium distance, force constant and valence band of an 
infinite, metallic lithium chain as a function of the number of neighbors and the number of k-points, 
using a 6s basis set" 

Total energy Equilibrium 
Number of Number of  per unit cell distance Force constant ~2~(0) eVerrni 
neighbours k-points [a.u.] [a.u.] [mdyne/•] [a,u.] [a.u.] 

4 13 --7.424670 5.8822 0.122 -0.22916 -0.11193 

6 13 -- 7.424737 5.8918 0.121 --0.23199 0.10951 
6 33 --7.424713 5.8930 0.121 --0.23182 --0.10960 

10 33 -- 7.424759 5.8966 0.121 --0.22678 --0.10716 

~See Ref.[17].  
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distance, the force constant and the valence band structure for different number of 
neighbors and k points is given, using again the (is basis. 

An inspection of Tables 1 and 2 gives already an impression of the relative im- 
portance of these two convergence problems. Whereas the number of k-points 
has only a minor influence on the computed properties and calculations using the 
minimal number of k-points to avoid cyclic properties [26] give already quite 
reasonable results, convergence with respect to the number of neighbors turns out 
to be more important. It is especially noteworthy that reasonable results can only 
be obtained if at least three or four neighbors are included. Although the con- 
vergence pattern of the band structure is somewhat irregular one has to keep in 
mind that the physical meaning of the energy bands has to be interpreted via 
Koopmans' theorem [27]. Since the errors connected with the use of Koopmans' 
theorem in the interpretation of photoelectron spectra can be of the order of 
_+ 1 eV, the difference of ~0.14 eV between the fourth and the last row of Table 1 
for the valence band width is negligible for all practical purposes. 

Let us now turn to the basis set dependence of the computed ground state pro- 
perties. A close examination of the numerical results in Table 3 demonstrates that 
the variation of the equilibrium distance as a function of the basis set used is much 
larger than the changes due to lattice summations. Generally, an improvement of 
the basis set applied affects the equilibrium distance of the infinite chain in the 
same direction as for the case of the isolated molecule, although the quantitative 
effects are somewhat modified. While the addition of two p functions to the 8s 
basis reduces the equilibrium distance of the Li 2 molecule by ,~ 0.2 a.u., the effect 
is much smaller, although still significant, in the infinite chain. The rather large 
change from the 8s to the 9s basis, which contains already two functions for the 2s 
level of the Li atom, demonstrates that for a correct description of the metallic 
bonding additional flexibility is needed in this region. As has been found earlier by 
several groups, polarization functions always compensate partly the deficiencies 
in the s basis. 

A comparison of the isolated Li 2 molecule and the linear lithium chain shows a 
marked increase in the equilibrium distance by about 10~. This is in qualitative 
agreement with experiment, since the equilibrium distance in the body-centered 
Li crystal is ~ 14~ larger than in Li 2 . The Hartree-Fock limit value for re(Li2) [-28] 
is about 0.2 a.u. larger than the experimental one. Therefore a similar effect could 
be expected for the Hartree-Fock limit equilibrium distance of the three- 
dimensional crystal, if one assumes that the influence of electron correlation on the 
interatomic distances does not change dramatically for these two systems. 

Ab initio calculations on the Li crystal by Kumar et al. [-23] yielded an equilibrium 
distance which was 20~ larger than the experimental value. The authors attributed 
this discrepancy to the inherent deficiencies of the Hartree-Fock approach for 
metallic systems. On the other hand, Sperber and Calais [22] and Stoll and 
Preug [5] report values much closer to experiment (see Table 4). 

Although a comparison between one-dimensional and three-dimensional calcula- 
tions is certainly questionable, it might give some information on the origin of this 
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re(Li-Li) a.u. 
Table 4. Equilibrium distances for the lithium crystal obtained by 

Ref. previous ab initio calculations and by experiment 

6.99 (bcc) [23] 
7.18 (fcc) [23] 
6.05 (bcc) [22] 
5.82 (bcc) [5] 
5.74 (bcc) a [29] 
5.88(fcc)" [29] 

a Experimental value. 

discrepancy. In Ref. [23] a basis set of Slater type orbitals was used, composed of a 
ls function with standard exponents 2.69 and two 2s functions with exponents 3.0 
and 0.5, respectively. We mimiced this basis by an STO-3G expansion [30] using 
the same exponents and performed also calculations with the standard STO-3G 
basis with exponents 2.69 and 0.65 for the ls and 2s function, respectively. The 
corresponding results are shown in the two last rows of Table 3. Surprisingly a 
lower energy for the standard STO-3G basis was found, contrary to the result of 
Kumar et al. Moreover the extremely large difference in the equilibrium distance 
for both Li z and the infinite lithium chain, using the basis of Kumar et al. compared 
to all other basis sets used in the present work, leads us to the conclusion that their 
results most probably reflect the deficiency of the particular basis set chosen. 
Furthermore, they reported a positive Fermi energy, although it is well known that 
all eigenvalues of occupied states must be negative (see e.g. Ref. [31]) in a Hartree- 
Fock calculation. As a consequence of this result they found a width of the 
occupied part of the valence band of about 7.2 eV. Since from experiment a width 
of about 4 eV can be deduced [24], they attributed this large difference again to the 

Table 5. Valence band of a linear, metallic lithium chain at the respective 
equilibrium geometries as a function of the basis set used and the number of 
neighbors taken into account. All values are given in eV 

Number of Width of the Width of the 
Basis set neighbors 825(0) eVerml occupied part unoccupied part 

6s a 6 - 6 . 3 1  - 2 . 9 8  3.33 6.00 
8s 4 - 6 . 3 0  - 3 . 0 7  3.23 6.59 
8s 6 - 6 . 31  - 2 . 9 9  3.32 5.97 
8slp 6 -6 .31  - 3 . 1 3  3.t8 4.93 
8s2p 6 - 6 . 3 2  - 3 . 1 6  3.16 4.55 
9s 8 - 6 . 2 5  - 2 . 9 5  3.33 6.68 
952p 4 - 6 . 3 5  - 3 . 3 0  3.05 4.47 
9s2p 6 -6 .41  - 3 . 2 0  3.21 4.56 
9s2p 8 - 6.23 - 3.14 3.08 4.56 
STO-3G u 6 -6 .31  - 2 . 9 7  3.34 6.07 
STO-3G c 6 - 6 . 1 5  - 3 . 4 8  2.66 4.43 

For contractions see Table 3, 
b Standard STO-3G basis set without pz-functions. 
~STO-3G expansion of the basis set used in Ref. [23]. 
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inherent deficiencies of the Hartree-Fock method in metallic systems. Although 
there is certainly a significant systematic error in the Hartree-Fock treatment of 
these types of systems, due to the occurrence of nearly degenerate states the 
quantitative effects have not yet been assessed and have probably been over- 
estimated in their work. 

Table 5 shows the lower band edge of the linear, metallic lithium chain together 
with the Fermi level. One can observe that the computed results are not extremely 
sensitive to variations in the basis set. In the subsequent chapters we will demon- 
strate that this is not always the case. The width of the unoccupied part of the 
valence band is given only as an illustration. No direct physical significance can be 
attributed to these virtual levels in the framework of the Hartree-Fock picture. 

4. The Linear Lithium Hydride Chain 

For our model studies on a typically ionic system we chose the linear chain of 
lithium hydride molecules. Small clusters of lithium hydride have recently been 
studied by Rupp and Ahlrichs [-32]. These authors found that inclusion of electron 
correlation leads only to a negligible correction of the order of 1 kcal/mole in the 
reaction energy (LiH), + LiH = (LiH),+ 1. The lithium hydride crystal has been 
investigated previously at the Hartree-Fock level by Kunz and Mickish [-33, 34] 
and by Stoll and PreuB [35]. A linear lithium hydride dimer was studied by Rych- 
lewsky and Sabin [36]. The equilibrium geometry of (LiH)2 has been found to be a 
centro-symmetric one [-37, 38]. Since the linear lithium hydride chain is energeti- 
cally disfavored compared to structures with higher symmetries, no comparison 
to dimer calculations was attempted in this work. The only other available 
calculation on the LiH chain has been performed using the FSGO method [39]. 

Pilot calculations on the (LiH)~ system with two different LiH distances indicated 
that with increasing number of neighbors the two distances tend to become equal. 
While in second neighbors interactions the difference is still 0.04 a.u., inclusion of 
the third neighbors leads to a difference of only 0.02 a.u. This result demonstrates 
that chemical bonding in the lithium hydride chain is completely different from the 
case of the hydrogen fluoride chain, where a hydrogen bonded, nonequidistant 
molecular chain is found to have the lowest energy [9]. Consequently, for all 
further investigations only the equidistant lithium hydride chain was treated. As 
in the previously discussed case of the lithium chain extensive investigations on the 
basis set dependence and of the effect of truncating the lattice sums have been 
performed. 

In Table 6 the resulting equilibrium geometries, force constants, Mulliken popu- 
lations, the total energy per unit cell and the corresponding stabilization energy 
per unit cell are shown. For completeness the values for the isolated molecule are 
given as well. In Fig. t the 2a-valence band obtained in sixth neighbor's inter- 
actions using the 8/4 and 8, 1/4, 1 basis is depicted. Table 7 shows the variation of the 
computed band structure with different number of neighbors and different basis 
sets. The variation of the computed properties with increasing number of k-points 
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E[a.u.] 

Fig. 1. 2a-valence band of  a linear lithium 
hydride chain with sixth neighbor's interactions. 
The full line results from a calculation with the 
8, 1/4, 1 basis set, the broken line was obtained 
with the 8/4 basis 
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was found to be insignificant, provided their number exceeds the absolute minimum 
needed. 

From these results a number of conclusions can be drawn. The equilibrium 
distance in the infinite chain is larger than for the isolated molecule, similar to the 
case of the isolated lithium chain, although this effect was much more pronounced 
in the former case. The experimental bond distance in the LiH crystal (3.87 a.u.) is 
much larger than our computed equilibrium distance for the linear chain. This is not 
too surprising since the isotropic, cubic lithium hydride crystal does not have much 
in common with the extremely anisotropic, linear structure. Due to problems with 

Table 7. Band structure of the linear lithium hydride chain with different basis sets and with different 
number of  neighbors. All values in a.u. 

Number of  
Basis set neighbors cla(0 ) el~r(n ) Ale e2fr (0) ~2a(~) A2a 

7/3" 6 -2.40666 -2.40638 0.00028 -0.37123 -0.35240 
7, 1/3, 1 6 -2.39306 -2.39272 0.00034 -0.36919 -0.36392 
8/4 2 -2.42717 -2.42695 0.00022 -0.38071 -0.36070 
8/4 3 -2.41790 -2.41768 0.00022 -0.37504 -0.35652 
8/4 4 -2.41424 -2.41401 0.00023 -0.37314 -0.35551 
8/4 5 -2.41241 -2.41218 0.00023 -0.37247 -0.35512 
8/4 6 -2.41135 -2.41111 0.00024 -0.37208 -0.35468 
8, 1/4, 1 4 -2.39892 -2.39861 0.00031 -0.37324 -0.36773 
8, 1/4, 1 5 -2.39685 -2.39654 0.00031 -0.37152 -0.36663 
8, 1/4, 1 6 -2.39571 -2.39540 0.00031 -0.37091 -0.36611 
8/5 6 -2.41124 -2.41103 0.00021 -0.37157 -0.35407 
8, 1/5, 1 6 -2.39559 -2.39527 0.00032 -0.37093 -0.36618 

0.01883 
0.00527 
0.02001 
0.01852 
0.01763 
0.01735 
0.01722 
0.00551 
0.00489 
0.00480 
0.01750 
0.00475 

aSee Table 6. 
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near linear dependencies, already mentioned in chapter 2, calculations with first 
neighbor's interactions could not be performed, hence the convergence could only 
be studied starting from second neighbors. Again, as in the previous chapter, 
variations in the computed properties due to changes in the basis set are much more 
pronounced than changes due to the extension of lattice summations. Increasing 
the number of s type functions leads to an increase in the equilibrium distance, 
whereas inclusion of polarization functions has the opposite effect. These trends 
could already be guessed from the results on the isolated LiH molecule. The 
ionicity of the LiH bond is increased in the infinite chain. Inclusion of the sixth 
neighbors is sufficient to obtain the equilibrium distance to within ~0.002 a.u. 

Turning to the total energies per unit cell it is important to note that already second 
neighbor's interactions give a value reasonably close to the ones obtained from more 
elaborate lattice summations. This is due to the fact that in the CO approach the 
translationally symmetric potential is essentially already correct for finite neigh- 
bor's interactions, whereas the situation is different in cluster type calculations, 
where edge effects are far more important. Nevertheless for a more accurate 
evaluation of the stabilization energy per unit cell one has to take into account the 
Coulomb field of the further neighbors. 

Rather drastic changes have been found in the band width of the 2a-band, when 
the basis was improved by the inclusion of a polarization set. Although the total 
band width as such is very small indeed, a relative change by roughly a factor of 
four seems to be significant and shows the necessity of using extended basis sets for 
the proper calculation of band structures. The effect of including further neighbors 
can be described as an almost uniform shift of the bands on the energy scale. 

5. The Beryllium Hydride Polymer (Bell2) x 

As a third example for our model studies the beryllium hydride polymer was 
treated (see Fig. 2). Because of experimental difficulties the structure of solid 
Bell 2 has not yet been determined. It has been suggested [-40] that a hydrogen- 
bonded polymer might be a conceivable structure which could exist in solid Bell 2 . 

r �9 Q)  �9 r 

�9 

Fig. 2. Geometries of  small beryllium hydride 
clusters and the infinite (Bell2) ~ polymer. Large 
open circles correspond to the Be atom, small full 
circles to the H a tom 
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Table 8. Equilibrium geometries and total 
energies of Bell a with various basis sets. 
All values in a.u. 

"See Refs.  [17] and  [18]. 
b Originating from the 8s basis by omitting 
the function with smallest exponent. 

Basis set re Total energy 

8/4 (4, 1, 1, 1, 1/2, 1, 1)" 2.602 - 1 5 . 6 5 6 7 6 3  
8, 1/4 (p-exp. =0 .4 )  2.523 - 15.748882 
8, 2/4 (p-exp.: l, 6, 0.3) 2.520 - 15.759931 
8, 2/4, 1 ( p n = 0 . 5 2 )  2.516 - 15.765037 
7/4b 2.592 -- 15.655003 
7, 1/4 2.518 -- 15.746980 

Recent quantum mechanical calculations supported this point of view [41]. 
Chainlike structures were reported to be energetically more favored than cyclic 
arrangements. A rather high cohesion energy of - 4 8  kcal/mole for the Bell 2 
crystal has been estimated earlier [42]. In Ref. [41] the extreme sensitivity to 
changes in the basis set of the stabilization energy for the reaction 2 Bell 2 ---, BezH 4 
has already been noted. Our calculations confirmed this result. In Tables 8 and 9 
the equilibrium geometries and total energies of B e l l  2 and the dimer B e z H  4 

obtained with different basis sets are collected. For Bell 2 only the linear structure 
was considered, while B e z H  4 was  assumed to have D2h symmetry. One can easily 
recognize that the equilibrium geometry changes drastically on inclusion of one p 
function on Be. This effect is especially large in the dimer. A further improvement 
of the basis set has only minor consequences for the equilibrium geometry (a 
slight reduction of the terminal Be-H distance), whereas the stabilization energy 
of the dimer is still increasing, and it seems that it has not yet converged. Hence, 
compared to Ref. [41], we find a slightly larger stabilization energy on the SCF 
level, which is due to the more complete geometry optimization in this work. The 
p functions on the hydrogen atoms have also a non-negligible effect. Additionally 
the geometry of Be3H 6 was  partly optimized with the 7, 1/4 basis using the same 
geometrical parameters as in the case of BezH 4 and assuming a Dzd configuration, 

Table 9. Equilibrium geometries, total energies and stabilization energies of Be2H 4 and Be3H 6 with 
various basis sets 

d b h r Total energy EBe2m -- 2EBett z EBe3H 6 -- (EBe2m + EBen2 ) 
Basis set a [a .u . ]  [a.u.~ [a .u . ]  [a .u . ]  [kcal/mole] [kcal/mole] 

8/4 2.330 1.858 2.600 - 3 1 . 3 1 9 5 4 2  - 3 . 7 7  
8, 1/4 1.947 2.002 2.525 - 3 1 . 5 2 6 7 2 6  - 18.20 

Be2H48,  2/4 1.949 2.004 2.519 - 3 1 . 5 5 2 5 1 3  - 2 0 . 5 9  
8, 2/4, 1 1.951 1.999 2.514 - 3 1 . 5 6 6 3 7 8  - 2 2 . 7 2  
7/4 2.352 1.898 2.582 -31 .313641  - 2 . 2 6  - 
7, 1/4 1.946 2.000 2.515 - 3 1 . 5 2 4 1 9 3  - 1 8 . 9 6  

B e 3 H 6 7 , 1 / 4  1.944 2.012 2.509 - 4 7 . 3 1 4 8 1 8  - - 2 7 . 3 7  
8, 2/4, 1 1.944 c 2.012 2.509 47.378329 - - 2 9 . 4 6  

aSee Table 8. 
b For the definition of the geometrical parameters see Fig. 2. 
c Not optimized, same geometry as with 7, 1/4 basis. 
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Table 10. Equilibrium geometry and total energy of the beryllium hydride polymer as a function of  
basis set and number of neighbors. All values in a.u, 

Number  of 
Basis set a neighbors d b h E/cell 

7/4 1 2.202 1 .938  -31.298179 
7/4 2 2.217 1.927 -31.310883 
7/4 3 2.219 1.928 -31.315763 
7,1/4 2 1.898 2.024 -31.577967 
7,1/4 3 1.901 2.025 -31.577951 

"See Table 8. 
b See Fig. 2. 

thereby neglecting that in the Be-H-Be bridged bond, the two Be-H distances 
are no longer exactly equal. The resulting minimum geometry was then recomputed 
in the 8, 2/4, 1 basis, leading to a stabilization energy for Be2H 4 + Bell 2 ~ BeaH 6 
of 29.5 kcal/mole, which is about 2.5 kcal/mole larger than found in Ref. [41]. 

In the case of the (Bell2) x polymer difficulties due to near-linear dependencies 
were encountered if the 8/4 basis was applied. To overcome this problem the 8s 
basis on beryllium was reduced to 7s by omitting the function with smallest 
exponent. The effect of this procedure has been tested on Bell 2 and BeEH 4 (see 
Tables 8 and 9), and was found to be almost negligible. The structure of the 
beryllium hydride polymer was optimized with respect to the parameters d and h 
(see Fig. 2) with various neighbors in the 7/4 and 7, 1/4 basis. The corresponding 
results are shown in Table 10. The enormous effect of the polarization function 
on the equilibrium geometry parallels the one for the oligomers. The difference in 
the convergence behavior of the total energy per unit celt with and without a p set 
on beryllium may probably be attributed to the different polarity observed. Mulli- 
ken population analysis leads to Be(2.502) and H(1.749) with the 7/4 basis, whereas 
with the (7, 1/4) basis one obtains Be(3.191) and H(1.404). Table 11 gives a survey 
of equilibrium geometries and stabilization energies for the reactions (Bell2) n 
+BeH2--~ (Bell2),+ 1 +AE, using the 7, 1/4 basis. 

Surprisingly enough, a slightly lower stabilization energy per Bell 2 was found in 
the infinite chain than for the reaction Be2H 4 + Bell 2 -* Be3H 6 . Although this 

d a h r E[kcal/mole] 

Bell z - - 2,518 - 
BezH 4 1,946 2.000 2.515 - 18.96 
Be3H 6 1.944 2.012 2.509 -27.37 
Be4H 8 1,944 b 2.012 2.509 -25.86 
(BeH2)x ~ 1 .901  2.025 - -26.36 

a Geometry given in a.u. 
b Assumed geometry. 
c With third neighbor's interactions. 

Table 11. Equilibrium geometries and stabil- 
ization energies for the reactions (Belle) . 
+BeH2--~ (BeHz),+I+AE, using the 7, 1/4 
basis set 
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could in principle be traced back to a not yet sufficiently converged totaI energy per 
unit cell, we find the same effect for the reaction Be3H 6 + Bell  2 ~ Be4H s . Further 
geometry optimization in Be4H s can certainly not change the picture. No explana- 
tion could be found for this puzzling result. Generally, one can observe that 
(Bell2) x seems to be a case where cluster calculations with a small number  n yield 
results which are quite close to the ones for the infinite chain. A similar result has 
been suspected in Ref. [41]. This is probably  due to the fact that all these clusters 
with n =2 ,  3, . . .  are symmetric with respect to edge effects, contrary to the case 
o f  a chain of  polar  AB molecules, as e.g. (LiH)~ o or (HF)~ o . The largest difference 
in geometrical parameters  between BezH 4 and (Bell2) x occurs for the Be-Be 
distance, which is contracted by about  0.1 a.u. in the infinite chain. In Fig. 3 the 

- '6 

E[a.u,] 

-.7 �84 

Fig. 3. Band structure o f  the bery[- 
l ium hydride polymer with third 
neighbor 's  interactions. Full lines 
result f rom a calculation with the 7, - 8  
1/4 basis set, the broken lines were 
obtained with the 7/4 basis 0 

~ ~  ..  

s 

band structure of  the beryllium hydride polymer  is shown for the case of  third 
neighbor 's  interactions. The vatence bands are given for the equilibrium geometry' 
using the 7, 1/4 basis. For  comparison results without the polarization function are 
given as well. The geometry was identical in both  cases. The highest valence band is 
degenerate. As in the case of  the lithium hydride chain a rather drastic effect can be 
observed. Inclusion of  a set o f p  functions on Be results in a change of  the band 
widths by about  a factor of  two. Since p functions on hydrogen were not included, 
one can expect a further change if still more  extended basis sets are used. The 
inclusion of  further neighbors manifests itself in a uniform shift on the energy 
scale, similar to the case previously treated. 

6. Conclusions 

A series of  systematic investigations has been presented in this work which 
demonstrates that  the CO method is a very useful tool for the evaluation of  ground 
state properties of  polymers,  including geometries and force constants. One can 
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expect that this approach will work equally well in the case of  two- and three- 
dimensional aggregates. Yet, for a more quantitative description it is of primary 
importance, as in the case of  molecules, to use more extended basis sets. Band 
structures turned out to be extremely sensitive. Errors of more than 100% can be 
obtained if the basis set applied is not sufficiently flexible in the valence region. It is 
tempting to try to establish an order concerning the relative importance of  the 
convergence of  the various expansions, which have been discussed in this work. 
As a simple rule one could say that convergence with respect to the basis set is 
crucial. Next important is a correct treatment of  lattice sums, whereas the number 
of  k-points has only a minor influence. This relative ordering of  effects has been 
found in all examples studied. As a consequence of  the near-linear dependencies 
the first two convergence problems are intimately connected. The use of  larger 
basis sets induces the necessity to include further neighbors. It is this specific 
feature which calls for an approximate treatment of the influence of  more distant 
neighbors. In a first step a sufficiently accurate description of  the unit cell and the 
chemical bonding between cells has to be reached. The remaining bulk effects could 
for example be taken into account by electrostatic approximations or by some sort 
of integral approximations. Work along these lines is in progress in our laboratory. 
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